Brain Tissue Segmentation of Neonatal MR Images Using a Longitudinal Subject-specific Probabilistic Atlas.

نویسندگان

  • Feng Shi
  • Yong Fan
  • Songyuan Tang
  • John Gilmore
  • Weili Lin
  • Dinggang Shen
چکیده

Brain tissue segmentation of neonate MR images is a challenging task in study of early brain development, due to low signal contrast among brain tissues and high intensity variability especially in white matter. Among various brain tissue segmentation algorithms, the atlas-based segmentation techniques can potentially produce reasonable segmentation results on neonatal brain images. However, their performance on the population-based atlas is still limited due to the high variability of brain structures across different individuals. Moreover, it may be impossible to generate a reasonable probabilistic atlas for neonates without tissue segmentation samples. To overcome these limitations, we present a neonatal brain tissue segmentation method by taking advantage of the longitudinal data available in our study to establish a subject-specific probabilistic atlas. In particular, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic atlas based tissue segmentation, along with the guidance of brain tissue segmentation resulted from the later time images of the same subject which serve as a subject-specific probabilistic atlas. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineation results. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neonatal brain image segmentation in longitudinal MRI studies

In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on ...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Cortical enhanced tissue segmentation of neonatal brain MR images acquired by a dedicated phased array coil Citation

The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combi...

متن کامل

Segmentation of neonatal brain MR images using patch-driven level sets

The segmentation of neonatal brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), is challenging due to the low spatial resolution, severe partial volume effect, high image noise, and dynamic myelination and maturation processes. Atlas-based methods have been widely used for guiding neonatal brain segmentation. Existing brain atlases were generally constructed...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 7259  شماره 

صفحات  -

تاریخ انتشار 2009